

**OWNERS' WORKSHOP MANUAL** 

# GET TO KNOW YOUR DIRT LATE MODEL

PRO // SUPER





## INTRODUCTION

This manual is intended to provide you with a guide to using the setup adjustments available on the Pro and Super Late Models so that you can have a better understanding of the adjustments available to you.

Before diving into advanced setup changes, it is best to become familiar with the car and track as well as how the car feels when you adjust the Tight to Loose slider. Get on track and focus on making smooth and consistent laps, identifying the proper racing line and experiencing the handling of the car with different levels of Tight to Loose.

Once you are confident that you are nearing your driving potential with the Tight to Loose slider, read on to the Advanced section to begin tuning the car more closely to your handling preferences.

2

# DRIVING TIPS

#### **PRO LATE MODEL**

Pro Late Models aren't as powerful, so driving with the rear end 'hung out' can induce drag as you don't have the power to the wheels to overcome this. Only give the car just enough yaw to make the corner to maximize lap times.

The body on a Late Model is much wider than a Sprint Car, so give yourself plenty of space between the wall. Touching the wall with the right rear might just suck you in.

#### **SUPER LATE MODEL**

Balancing tire spin and yaw is the key to maximizing lap times in the Super Late Model.

All tips learned in the Pro Late Model will help you in the Super Late Model. Everything simply happens a bit faster, so keep those reflexes sharp!

# TECH SPECS

| CHASSIS BOTH CARS    |                                                                      |         |  |  |
|----------------------|----------------------------------------------------------------------|---------|--|--|
| DESCRIPTION          | Double Wishbone Independent front, 4-link solid axle rear suspension |         |  |  |
| LENGTH               | 199 in                                                               | 5054 mm |  |  |
| WIDTH                | 94 in                                                                | 2387 mm |  |  |
| WHEELBASE            | 103 in                                                               | 2616 mm |  |  |
| DRY WEIGHT           | 2150 lbs                                                             | 975 kg  |  |  |
| WET WEIGHT W/ DRIVER | 2531 lbs                                                             | 1148 kg |  |  |

| POWER UNIT   |                                            |           |                  |           |
|--------------|--------------------------------------------|-----------|------------------|-----------|
| DESCRIPTION  | Naturally aspirated steel block pushrod V8 |           |                  |           |
| CAR          | Pro Late Model                             |           | Super Late Model |           |
| DISPLACEMENT | 358 cid                                    | 5.9 Liter | 438 cid          | 7.2 Liter |
| TORQUE       | 485 lb-ft                                  | 657 Nm    | 650 lb-ft        | 881 Nm    |
| POWER        | 615 bhp                                    | 458 kW    | 800 bhp          | 596 kW    |

# **BASIC CAR SETUP**

For those who wish to change the car's handling characteristics without diving into the Custom Setup options, the Recommended setups can be adjusted with the Tight/Loose slider in the Car Setups menu. Changing the slider setting towards either Loose or Tight will automatically adjust the car's setup to behave that way.



## TIGHT SETUP

A Tight setup will generally be easier to control, especially when applying throttle because they will lose some front grip while cornering, a condition known as Understeer. These setups will not turn quite as easily, and can sometimes be slower, but will be easier to apply the throttle due to increased grip.

## LOOSE SETUP

A Loose setup is more difficult to control because it will tend to lose rear grip when cornering, a condition known as Oversteer. These setups will turn better, but be more difficult to apply the throttle due to the reduced grip. This can be faster in some cases, but an excessively loose setup, will be slower due to the lack of rear grip.

## ADVANCED CAR SETUP

Once you are confident that you are nearing your driving potential with the Tight to Loose slider, begin tuning the car more closely to your handling preferences with the following adjustments.

| LEFT FRONT    |             | RIGHT FRONT   |             | FRONT                |        | MISC            |                           |
|---------------|-------------|---------------|-------------|----------------------|--------|-----------------|---------------------------|
| Camber Angle  | 1.5 deg     | Camber Angle  | -2.5 deg    | Front Brake Bias     | 40%    | Wheel Lock      | 24 deg                    |
| Spring Rate   | 380 lbs     | Spring Rate   | 430 lbs     | Left Weight          | 53.5%  | Steering Offset | 0.100                     |
| Shock Bump    | 3.0 valving | Shock Bump    | 3.0 valving | Cross Weight         | 48.0%  | Tire Compound   | Soft                      |
| Shock Rebound | 5.0 valving | Shock Rebound | 9.0 valving | Ride Height          | 0.00"  |                 |                           |
| Tire Pressure | 7.50 psi    | Tire Pressure | 7.00 psi    |                      |        |                 |                           |
| LEFT REAR     |             | RIGHT REAR    |             | REAR                 | nd     | GEARS           | 4                         |
| Spring Rate   | 450 lbs     | Spring Rate   | 440 lbs     | Chassis J-Bar Height | 15.00" | Rear End Ratio  | 4.50                      |
| Shock Bump    | 9.0 valving | Shock Bump    | 3.0 valving | Axle J-Bar Height    |        |                 |                           |
| Shock Rebound | 4.0 valving | Shock Rebound | 5.0 valving | Ride Height          | 1.00"  |                 |                           |
| Tire Pressure | 6.50 psi    | Tire Pressure | 6.50 psi    | Rear Weight          | 54.5%  | - QU            | Contraction of the second |
|               |             | Tire Stagger  | 6.0"        |                      |        | and the second  |                           |

## CORNERS

#### **CAMBER ANGLE**

Camber is the vertical angle of the wheel. Set the left side positive (tire leaning away from the car) and the right side negative (tire leaning towards the car).

| MORE CAMBER        | LESS CAMBER        |
|--------------------|--------------------|
| MORE TURN RESPONSE | LESS TURN RESPONSE |
| LESS STABILITY     | MORE STABILITY     |

#### **SPRING RATE**

Spring Rate describes how stiff the corner spring is. Softer springs allow for more mechanical grip and deal with bumps better, while stiffer springs produce better response to driver inputs. Smaller, slower tracks will benefit from softer springs while stiffer springs will work better at fast, high-banked tracks.

| LEFT FRONT        |                                         | <b>RIGHT FRONT</b> |                                         |
|-------------------|-----------------------------------------|--------------------|-----------------------------------------|
| STIFFER<br>SOFTER | LOOSER ON TURN-IN<br>TIGHTER ON TURN-IN | STIFFER<br>SOFTER  | TIGHTER ON TURN-IN<br>LOOSER ON TURN-IN |
|                   |                                         |                    |                                         |
| LEFT REAR         |                                         | <b>RIGHT REAR</b>  |                                         |

#### SHOCK BUMP

Shock Bump affects how stiff the shock is in compression (reduction in length). Higher values will make the shock harder to compress (good for smooth conditions), while lower values make the shock easier to compress (good for bumpy conditions). Differences between corner bump stiffnesses change the overall balance of the car on corner entry and exit, but not in the center of the corner.

| FRONT SHOCK | BUMP             | <b>REAR SHOCK</b> | BUMP            |
|-------------|------------------|-------------------|-----------------|
| HIGHER      | TIGHTER ON ENTRY | HIGHER            | TIGHTER ON EXIT |
| LOWER       | LOOSER ON ENTRY  | LOWER             | LOOSER ON EXIT  |

#### **SHOCK REBOUND**

Shock Rebound affects how stiff the shock is during expansion (increase in length). Higher rebound values will slow expansion of the shock, which is good for aero and smooth conditions, while lower values will allow the shock to extend faster, which is good for bumpy conditions to prevent unloading the tires. Differences between corner rebound stiffnesses change the overall balance of the car on corner entry and exit, but not in the center of the corner.

| LEFT FRONT      |                                   | <b>RIGHT FRONT</b> |                                   |
|-----------------|-----------------------------------|--------------------|-----------------------------------|
| HIGHER<br>LOWER | TIGHTER ON EXIT<br>LOOSER ON EXIT | HIGHER<br>LOWER    | LOOSER ON EXIT<br>TIGHTER ON EXIT |
|                 |                                   |                    |                                   |
| LEFT REAR       |                                   | <b>RIGHT REAR</b>  |                                   |

#### TIRE PRESSURE

Air pressure in the tire. Higher pressures will reduce grip while lower pressures will increase grip. Higher speeds and loads will require higher pressures, while lower speeds and loads will see better performance from lower pressures. Pressures should be set to track characteristics for best performance.

| LEFT FRONT      |                                         | <b>RIGHT FRON</b> | т                                       |
|-----------------|-----------------------------------------|-------------------|-----------------------------------------|
| HIGHER<br>LOWER | LOOSER ON TURN-IN<br>TIGHTER ON TURN-IN | HIGHER<br>LOWER   | TIGHTER ON TURN-IN<br>LOOSER ON TURN-IN |
|                 |                                         |                   |                                         |
| LEFT REAR       |                                         | <b>RIGHT REAR</b> |                                         |

#### **TIRE STAGGER**

Stagger is the difference in size of the left-rear and right-rear tire.

#### **HIGHER STAGGER**

BETTER TURN-IN MORE OVERSTEER THROUGH CENTER AND EXIT

#### **LOWER STAGGER**

MORE UNDERSTEER ON TURN-IN AND CENTER BETTER TRACTION ON EXIT

## FRONT

#### **FRONT BRAKE BIAS**

Brake Bias is the percentage of braking force that is being sent to the front brakes. Values above 50% result in more pressure being sent to the front, while values less than 50% send more force to the rear. This should be tuned for driver preference and track conditions.

HIGHER BRAKE BIAS MORE UNDERSTEER UNDER BRAKING LOWER BRAKE BIAS MORE OVERSTEER UNDER BRAKING

#### **LEFT WEIGHT**

The percentage of vehicle weight that is over the left-side tires.

HIGHER LEFT WEIGHT

LOWER LEFT WEIGHT TIGHTER HANDLING

#### **CROSS WEIGHT**

Percentage of total weight in the right front and left rear tires.

#### **HIGHER CROSS WEIGHT**

MORE TRACTION ON THROTTLE MORE UNDERSTEER THROUGH THE CORNER

#### **LOWER CROSS WEIGHT**

MORE OVERSTEER THROUGH THE CORNER LESS TRACTION ON CORNER EXIT

#### **RIDE HEIGHT**

Distance from ground to the front end. A lower front ride height can increase front grip, but can also make the car too loose.

#### LOWER FRONT RIDE HEIGHT

MORE OVERALL OVERSTEER

### HIGHER FRONT RIDE HEIGHT MORE OVERALL UNDERSTEER

### REAR

#### **CHASSIS J-BAR HEIGHT**

Increasing the chassis j-bar relative to the axle j-bar will make the car looser on corner entry and tighter on corner exit. Increasing the overall j-bar height (both ends together) generally increases roll angle and helps the car steer through the center, but reduces drive off the corner. Lowering the overall j-bar height tightens the center and provides more drive off.

#### **INCREASING BOTH J-BARS**

LOOSER CENTER LESS FORWARD TRACTION ON EXIT

#### DECREASING BOTH J-BARS

TIGHTER CENTER MORE FORWARD TRACTION ON EXIT

#### **INCREASING CHASSIS J-BAR**

LOOSER ON TURN-IN TIGHTER ON EXIT

#### **DECREASING CHASSIS J-BAR**

TIGHTER ON TURN-IN LOOSER ON EXIT

#### **AXLE J-BAR HEIGHT**

Increasing the axle j-bar relative to the chassis j-bar will make the car tighter on corner entry and looser on corner exit. Increasing the overall j-bar height (both ends together) generally increases roll angle and helps the car steer through the center, but reduces drive off the corner. Lowering the overall j-bar height tightens the center and provides more drive off.

#### **INCREASING BOTH J-BARS**

LOOSER CENTER LESS FORWARD TRACTION ON EXIT **INCREASING AXLE J-BAR** TIGHTER ON TURN-IN LOOSER ON EXIT

#### **DECREASING BOTH J-BARS**

TIGHTER CENTER MORE FORWARD TRACTION ON EXIT

### **DECREASING AXLE J-BAR** LOOSER ON TURN-IN, IGHTER ON EXIT

#### **RIDE HEIGHT**

Distance from ground to the rear end. Lowering the rear ride height can increase rear grip, but can make the car too tight.

LOWER REAR RIDE HEIGHT MORE OVERALL UNDERSTEER HIGHER REAR RIDE HEIGHT MORE OVERALL OVERSTEER

#### **REAR WEIGHT**

Percentage of total weight on the rear tires.

HIGHER REAR WEIGHT MORE OVERSTEER IN HIGH-SPEED CORNERS MORE TRACTION OUT OF LOW-SPEED CORNERS

#### LOWER REAR WEIGHT

MORE UNDERSTEER IN HIGH-SPEED CORNERS LESS TRACTION OUT OF LOW-SPEED CORNERS

World of Outlaws: Dirt Racing 24

### MISC

#### WHEEL LOCK

The amount of steering range available at maximum input.

#### **MORE WHEEL LOCK**

HIGHER STEERING RANGE FASTER STEERING RESPONSE

#### **LESS WHEEL LOCK**

LOWER STEERING RANGE SLOWER STEERING RESPONSE

#### **STEERING OFFSET**

This is used to compensate for chassis settings which cause the car to pull in one direction by recentering the steering wheel to eliminate steering input on the straights.

#### **TIRE COMPOUND**

Tire compound changes the softness of the tires on the car. This directly affects grip and will impact handling.

**SOFT** HIGH GRIP CAN INDUCE UNDERSTEER **MEDIUM** BALANCED GRIP AND HANDLING **FIRM** LOWER GRIP CAN INDUCE OVERSTEER

## GEARS

#### **REAR END RATIO**

The Rear End Ratio is the gear ratio between the driveshaft pinion and the differential ring gear. This will affect top speed and acceleration, and should be changed to reach maximum engine RPM by the end of the track's longest straight.

HIGHER RATIO LOWER TOP SPEED BETTER ACCELERATION LOWER RATIO HIGHER TOP SPEED LESS ACCELERATION